If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120=15x^2-5
We move all terms to the left:
120-(15x^2-5)=0
We get rid of parentheses
-15x^2+5+120=0
We add all the numbers together, and all the variables
-15x^2+125=0
a = -15; b = 0; c = +125;
Δ = b2-4ac
Δ = 02-4·(-15)·125
Δ = 7500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7500}=\sqrt{2500*3}=\sqrt{2500}*\sqrt{3}=50\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50\sqrt{3}}{2*-15}=\frac{0-50\sqrt{3}}{-30} =-\frac{50\sqrt{3}}{-30} =-\frac{5\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50\sqrt{3}}{2*-15}=\frac{0+50\sqrt{3}}{-30} =\frac{50\sqrt{3}}{-30} =\frac{5\sqrt{3}}{-3} $
| (2x+1)(3x-5)+1=4x^2 | | (7/18)x+(5/11)x+31,000=X | | 6x-17°+11=90 | | 18m(m+4/9)-16=118 | | 96+80t-16t^2=t | | 2(3x+2)=2x-x | | Y×y×y×y×y=32 | | 11900-20y+20y=119000 | | 7x-12x-5=-4+15 | | 10(119000-20y/10+20y=119000 | | 2x^2-5/3x=25/3 | | 4x(x-5)/5x-1,x=1/5 | | 61|2+n=12 | | 4x+6x=10.10 | | 3x2-1587=0 | | 4y-28=64+2y | | 2(x-3)=6x-5 | | 5y+6=3y+54 | | 10=2(.5x+5) | | 5y-16=-1 | | b+-3=9 | | x+9/18=5/9+x-3/5 | | 3x/4-27/9=13/4 | | 5^3-2x=5-^x | | 3x+2(-3/2x)=-4 | | 7x-6=3(2x+4)-6 | | 2=-5(1)+b | | 2^2x+1=128 | | 6(3^(2-x))=30 | | 4/3x-25/7=12/3 | | 4(1+6n)+3n=-104 | | 4x+40+3x+122=180 |